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Abstract. We analyse the two-dimensional spin-fermion model in the strong-coupling regime
relevant to underdoped cuprates. We recall the set of general sum rules that relate the moments
of spectral density and the imaginary part of the fermion self-energy to the static correlation
functions. We show that the two-pole approximation of the projection method satisfies the sum
rules for the first four moments of the spectral density and gives an exact upper bound for the
quasiparticle energy near the band bottom. We prove that the non-crossing approximation that is
often made in perturbative considerations of the model violates the sum rule for the third moment
of the spectral density. This leads to incorrect positioning of the lowest quasiparticle band. On
the other hand, the projection method is inadequate in the weak-coupling limit because of the
approximate treatment of the kinetic energy term. We propose a generalization of the projection
method that resolves this problem, and give a fermion self-energy that behaves correctly in both
the weak- and strong-coupling limits.

1. Introduction

Over the past few years it has become increasingly clear that the anomalous normal- and
superconducting-state properties of high-Tc cuprates are governed by their proximity to the
transition into the antiferromagnetic Mott–Hubbard insulator state. The transition occurs
for strongly underdoped systems. There are many indications that even overdoped cuprates
are never far from being antiferromagnetic [1, 2]. Such kinds of incipient antiferromagnet
at low temperatures have both fermionic and spin excitations that interact strongly. For the
description of such interaction, the two-dimensional spin-fermion models (SFM) are used.
They have a general form

Ĥ = Ĥkin + Ĥs + Ĥint . (1)

Here the kinetic energy term

Ĥkin =
∑
p

εpa
†
pap ap = N−1/2

∑
r

are
−ipr

describes the bare-fermion propagation. We take, for definiteness, the simplest version
of nearest-neighbour hopping,εp = −2t (cospx + cospy). The spin subsystem may be
described by the microscopic Heisenberg Hamiltonian

Ĥs = 1

2
I
∑
rg

Sαr+gS
α
r
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or quite generally by a phenomenological form of the dynamic susceptibility [3]χ(q, ω),
as long as we are only interested in the fermion spectrum. In the present work, we suppose
that the spin subsystem is in the paramagnetic state

〈
Sαr
〉 = 0 with strong antiferromagnetic

correlationsCg =
〈
Sαr+gS

α
r

〉
< 0; the correlation function

Cq = N−1
∑
r

exp(iqr)
〈
Sαρ+rS

α
ρ

〉
is strongly peaked at wave vectors in the vicinity ofQ = (π, π).

The third term in its simplest form describes the Kondo interaction:

Ĥint = J
∑
r

a†r S̃rar =
J√
N

∑
pq

a†pS̃qap+q S̃q = N−1/2
∑
r

S̃re
iqr . (2)

In the above formulae the sums run over the sitesr of a square lattice and over the
nearest neighbours with the lattice spacing|g| = 1. For brevity, we discard the spin index
for the creation(a+rσ ) and annihilation(arσ ) operators of the Fermi particles (we shall call
them electrons), and in the Hamiltonian of the Kondo interactionHint we use the notation
S̃r = Sαr σ α; summation over repeated indices is everywhere understood; theσα are the Pauli
matrices.〈· · ·〉 indicates thermodynamic averaging over the grand canonical ensemble.

In order to achieve a more realistic description, the interaction term may be generalized
by the addition of nearest-neighbour coupling,a

†
r S̃rar+g + HC etc [4]. It is essential that in

all casesĤint remains local in real space and does not couple directly to the excitations on
sites separated by large distances.

The usual approaches to the Hamiltonian (1) exploit its apparent similarity to that
of the polaron problem. Various perturbative methods have the advantage of giving an
exact treatment of the one-particle part,Ĥkin. It is widely believed that the non-crossing
approximation [2, 4–6] is appropriate for spin-fermion systems even in the strong-coupling
regime,J � t . Below, we shall prove that in this regime the non-crossing approximation
for the SFM violates the sum rule for the third moment of the spectral density; as a result, it
gives incorrect positioning of the lowest ‘singlet’ band. An alternative is the Mori–Zwanzig
projection technique [7]; due to the local nature ofĤint , it suffices to use a small number
of basic operators to give an appropriate account of the local correlations. The obvious
disadvantage of the technique is that the kinetic energy is treated in an approximate way; as
a consequence, this technique fails to correctly describe the weak-coupling regime,J � t .
In the present paper, we take the kinetic energy term into account exactly and use the
projection method for the remaining terms. As a result, we obtain a fermion self-energy
that behaves correctly in the weak-coupling limit and gives the correct lowest-band position
in the strong-coupling limit.

2. Sum rules for the Green’s function and the self-energy

The quantities that we calculate are the retarded fermion Green’s function (GF)

GXY (ω) = 〈X|Y †〉 ≡ −i
∫ ∞
t ′

dt eiω(t−t ′)〈{X(t), Y †(t ′)}〉. (3)

and the spectral density

AXY (ω) = − 1

π
Im[GXY (ω + i0)].

Here and below, {. . . , . . .}, [. . . , . . .] stand for anticommutators and commutators
respectively. For the diagonal GF, withY = X, the spectral density is positive definite,
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AXX(ω) > 0. The Mori–Zwanzig projection method allows us to representGXX(z), for
Im z > 0, in the continued-fraction form [8, 9]:

GXX(z) = b2
0

z− a0−
b2

1

z− a1− · · · −
b2
n

z− an − · · ·

(4)

where

b2
0 =

∫ +∞
−∞

AXX(ω) dω a0 = 1

b2
0

∫ +∞
−∞

ωAXX(ω) dω. (5)

The coefficientsbn, an, n > 0 are related to the spectral densityAXX(ω) via the set of
orthogonal polynomialsPn(ω), satisfying the recurrence [10, 11]

P−1(ω) = 0 P0(ω) = 1

Pn+1(ω) = (ω − an)Pn(ω)− b2
nPn−1(ω) (6)

where

b2
n+1 =

(∫ +∞
−∞

P 2
n+1(ω)AXX(ω) dω

)/(∫ +∞
−∞

P 2
n (ω)AXX(ω) dω

)
(7)

an+1 =
(∫ +∞
−∞

ωP 2
n+1(ω)AXX(ω) dω

)/(∫ +∞
−∞

P 2
n+1(ω)AXX(ω) dω

)
. (8)

Here we have used the non-normalized form of the polynomials:∫ +∞
−∞

Pn(ω)Ps(ω)AXX(ω) dω = δns
( m=n∏
m=1

bm

)2

.

On the other hand, from the equation of motion,

ω〈X|Y †〉 = 〈{X, Y †}〉 + 〈XL|Y †〉 XL ≡ [X, Ĥ ] (9)

the sum rule ∫ +∞
−∞

F(ω)AXY (ω) dω = 〈{XF(L), Y †}〉 (10)

follows for arbitrary functionsF(L). In particular, this establishes the relations of the
coefficientsan, bn with the static correlation functions:

b2
0 =

〈{X,X†}〉 a0 =
〈{XL, X†}〉〈{X,X†}〉 (11)

b2
1 =

〈{X(L− a0)
2, X†}〉〈{X,X†}〉 a1 =

〈{XL(L− a0)
2, X†}〉〈{X(L− a0)2, X†}

〉 . (12)

Now, introducing the self-energy6(z) through the relation(
z−

〈{XL, X†}〉〈{X,X†}〉 −6(z)
)
GXX(z) =

〈{X,X†}〉 (13)

and comparing (4) and (13), we see that6(z) is a continued fraction similar toG(z). Thus
we can introduce the spectral density

ρ(ω) = −Im[6(ω + i0+)]/π
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and obtain for it sum rules that follow from (10):

b2
1 =

∫ ∞
−∞

ρ(ω) dω (14)

a1 = 1

b2
1

∫ +∞
−∞

ωρ(ω) dω. (15)

As follows from (12) and (8), the last equality relates the third moment ofAXX(ω), the first
moment ofρ(ω), and the static correlation functions. For spin-fermion models in the limit
of low doping, the spin–spin correlation functions are only involved in (12). Below, we
show that non-crossing approximation violates sum rule (15) for the SFM, and is obviously
incorrect in the strong-coupling limit,J � t .

3. The projection technique

In practice, projection technique calculations are possible only for a finite basis set, and
only a finite number of continued-fraction levels can be calculated in (4).

In the framework of the SFM, we have

(ω − εp)〈ap|a†p〉 = 1+ J
√
f2〈bp|a†p〉 bp = N−1/2

∑
r

bre
−ipr (16)

where

br = 1√
f2
S̃rar f2 = 〈S̃r S̃r〉 = 3

4
.

Thus, the ‘bare’-electron operatorsar with the one-site spin-polaron operatorsbr represent
the natural basis set for giving an appropriate account of local correlations. It is important
that this set is closed with respect tôHint , i.e.

[ar, Ĥint ] = J
√
f2br [br, Ĥint ] = J (

√
f2ar − br). (17)

Now the commutation relation

[S̃r+Rar, Ĥ ] = −t
∑
g

S̃r+Rar+g + J S̃r+RS̃rar + [S̃r+Rar, Ĥs ] (18)

is projected onto the basis set in order to decouple the equation of motion for the higher-
order GFsGb(p, ω) ≡ 〈bp|a†p〉. In the following, we neglect the spin-excitation energy
I � t, J :

ωGb = 〈[bp, Ĥ ]|a†p〉 '
(
Cg

f2
εp − J

)
Gb + J

√
f2Ga. (19)

This gives both GFs in the two-pole approximation:

G
(2)
a,b(p, ω) =

|αSa,b|2
ω −�S +

|αTa,b|2
ω −�T |αSa,b|2+ |αTa,b|2 = 1. (20)

Here�n, αni , wherei = a, b, andn = ST (�S < �T ), are eigenvalues and eigenvectors of
the problem (

a0−�n b1

b1 a1−�n
)(

αn1

αn2

)
= 0 (21)

where the matrix elements are

a0 = εp b1 = J
√
f2 a1 = Cg

f2
εp − J. (22)
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If we take into account the normalizationb2
0 = 1, we see that the matrix elements correspond

to continued-fraction coefficients ofG(2)
a that coincide with the first two pairs of coefficients

of the exact GFGa. This means thatG(2)
a automatically satisfies the sum rules (11), (14),

and (15).
Near the band bottom,Ga andAaa should have the forms

Ga(p, ω) = Za(p)

ω − Ep +Ginc

Aaa(p, ω) = Za(p)δ(ω − Ep)+ Ainc(p, ω).
(23)

HereEp andZ(p) < 1 are the quasiparticle energy and the pole strength respectively. The
incoherent partAinc is not zero forω > ωmin > Ep. Now it is easy to show that�S
represents anexact upper boundfor Ep. Let us consider the eigen-operator for the lowest
‘singlet’ band:

ξS = αSa ap + αSb bp.
The GF

Gξξ = 〈ξS |ξ †S〉 =
Zξ(p)

ω − Ep +Gξξ,inc

has a pole at the same energy as the bare-fermion GF,Ga (in our model,αSa 6= 0 for all p).
On the other hand, from (5) and (21) we have

�S = Zξ(p)Ep +
∫ ∞
ωmin

ωAξξ,inc(p, ω) dω = Zξ(p)Ep +
[
1− Zξ(p)

]
�inc. (24)

Here,

�inc ≡
(∫ ∞

ωmin

ωAξξ,inc(p, ω) dω

)/(∫ ∞
ωmin

Aξξ,inc(p, ω) dω

)
> ωmin

is the centre of gravity of the incoherent part. As the pole strength lies in the range
06 Zξ(p) 6 1, we have

Ep 6 �S 6 �inc. (25)

That is, for anyp close to the band bottom, the exact energyEp is always lowerthan the
energy given by the two-pole approximation.

In the strong-coupling limit, this gives

�S ≈ −3

2
J + εp

(
1

4
+ Cg

)
(26)

and from (24) it follows that the actual pole position is lower than�S . It is not difficult to
calculate the next continued-fraction coefficient:

b2
2 =

1

f2N

∑
q

(
εp+q − 4

3
Cgεp

)2

Cq ≈
(
εp+Q − 4

3
Cgεp

)2

. (27)

In the approximate equality we took into account the fact that the main contribution to the
sum overq comes from the vicinity ofQ, andN−1∑

q Cq = f2. We see thatb2 is of the
order of the kinetic energyt � J . This means that the small polaron formed by our basic
operators interacts with the spin subsystem much more weakly than the bare hole. So, the
expected polaron energy renormalization from�S to Ep is of the order oft2/J .
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4. Exact treatment of the kinetic energy

From the above consideration, it follows that the two-pole expression (20) is useful in the
strong-coupling limit. In the opposite case ofJ � t , it becomes inappropriate, because it
gives the self-energy in the one-pole form

6(2)(z) = b2
1/(z− a1) (28)

and cannot describe the damping of quasiparticles. The reason for this lies in the approx-
imate treatment of the kinetic energy term in the course of the projection of the equation
for Gb, expression (19). Here we propose a generalization of the projection technique that
completely removes this shortcoming, and makes it possible to take the kinetic energy term
into account exactly.

We expressbp in the following form:

bp = 1√
Nf2

∑
q

S̃qap+q . (29)

The equation of motion for every term gives

(ω − εp+q)〈S̃qap+q |a†p1
〉 = 〈[S̃qap+q, V̂ ]|a†p1

〉. (30)

Here and below, we use the notation̂V = Ĥint + Ĥs . Now we project the higher-order
operator on the right-hand side of (30) onto our basis operatorsB1,p ≡ ap, B2,p ≡ bp:

〈{[S̃qap+q, V̂ ], B†i,p}〉 =
1

N
√
N

∑
r1r2r3

〈{[S̃r1ar2, V̂ ], B†i,r3}〉 exp(iqr1− i(p + q)r2+ ipr3)

= 1

N
√
N

∑
r1r2r3

〈{[S̃r1, V̂ ]ar2 + S̃r1[ar2, V̂ ], B†i,r3}〉 exp(iq(r1− r2)+ ip(r3− r2))

= 1√
N

∑
R

〈{[S̃r+R, V̂ ]ar + S̃r+R[ar, V̂ ], B†i,r}〉 exp(iqR)

= 1√
N

∑
R

Ki,R exp(iqR) ≡ 1√
N
Ki,q (31)

wherei = 1, 2. We have used the local character of the operatorV̂ that givesδr2,r3. Thus
equation (30) may be rewritten as

(ω − εp+q)〈S̃qap+q |a†p1
〉 ' 1√

N

∑
i

Ki,q〈Bi,p|a†p1
〉. (32)

Now, the equation forbp is

〈bp|a†p1
〉 = 1√

Nf2

∑
q

〈S̃qap+q |a†p1
〉 = 1

N

√
f2

∑
i,q

Ki,q

(ω − εp+q) 〈Bi,p|a
†
p1
〉. (33)

Explicit calculation gives (I ≈ 0)

K1,q = JCq K2,q = − J√
f2

Cq

and we obtain the following form for the fermion self-energy:

6(p,ω) = J 2f2

J + f2D
−1
p

Dp(ω) ≡ 1

N

∑
q

Cq

(ω − εp+q) . (34)
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In the weak-coupling limit,J � t , this expression coincides with the second-order result
from perturbation theory:

6pert (p, ω) = J 2Dp(ω) (35)

which corresponds to projecting (31) only on the first operatorap. In this limit, a polaron
of large radius is formed, and the bare fermion represents a slightly damped quasiparticle.

Now let us show that the self-energy (34) also gives the correct result in the strong-
coupling limit. The pole position is given byEp − εp −6(p,Ep) = 0. For determination
of the lowest-band position, we may neglect theεp+q ∝ t compared withω ∝ −J , and
write Dp(ω) ≈ f2/ω; then,

6(p,ω) ≈ J 2f2

J + f2ω/f2

Ep = εp − J
2
−
√(

εp + J
2

)2

+ J 2f2 ≈ −3

2
J.

The perturbation theory result is

6pert (p, ω) ≈ J 2f2/ω

Epert = εp

2
−
√(

εp

2

)2

+ J 2f2 ≈ −J
√

3

4
> �S.

The reason that the perturbation theory fails is the violation of the sum rule (15) for the
SFM. We have

ρpert (p, ω) = J 2

N

∑
q

Cqδ(ω − εp+q)

a1,pert = 1

b1

J 2

N

∑
q

Cq

∫ +∞
−∞

ωδ(ω − εp+q) dω = 1

f2N

∑
q

Cqεp+q = Cg

f2
εp.

(36)

Comparing (36) with the exact value given by equation (22) we see that it is the absence
of terms proportional toJ that leads to the completely wrong result forJ � t . It is not
difficult to prove that summation of the infinite series of non-crossing diagrams for the
self-energy does not change the value ofa1,pert given by (36). Indeed, the non-crossing
(self-consistent Born) approximation gives

6n−c(p, ω) = J 2

N

∑
q

CqGa(p + q, ω − ωq) (37)

whereωq is the energy of the spin excitations. We then have

a1,n−c = 1

b1

J 2

N

∑
q

Cq

∫ +∞
−∞

ωAaa(p + q, ω − ωq) dω = 1

f2N

∑
q

Cq(εp+q + ωq)

and obtain the same result (36) becauseωq is negligible, at least in the vicinity ofq = Q.
Moreover, the self-energy (37) leads to the absence of quasiparticles. We may write

6n−c(p, ω) ≈ J 2f2Ga(p +Q,ω).
Then,

Ga(p, ω) =
[
ω − εp − J 2f2Ga(p +Q,ω)

]−1

=
[
ω − εp − J 2f2

ω − εp+Q − J 2f2Ga(p, ω)

]−1

.
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Figure 1. The spectral density of the one-particle Green’s function with the self-energy obtained
in three different ways: from the two-pole approximation, (28); from the generalized projection
method, equation (34); and from second-order perturbation theory, equation (35).

Solution of the quadratic equation gives the expression for the Green’s function:

Ga(p, ω) =
(ω − εp)(ω − εp+Q)−

√
(ω − εp)2(ω − εp+Q)2− 4J 2f2(ω − εp)(ω − εp+Q)

2J 2f2(ω − εp)
which has no poles. An analogous result was obtained previously in reference [4].

5. Numerical results

In figure 1, we present the spectral densitiesAaa(p, ω + iη), η = 0.05t , that correspond
to three different representations of the fermion self-energy: the two-pole approximation,
equation (28); the generalized projection method, equation (34); and second-order perturb-
ation theory, equation (35). We took the valueJ/t = 3, which is typical for underdoped
cuprates [1–3]. For the spin–spin correlation function, we used the expression

Cq =
√

3|Cg|(1− γq)
2α1(1+ γq)

which is provided by the spherically symmetric theory for the Heisenberg model on a
square lattice [12, 13] (γq ≡ (cosqx + cosqy)/2, Cg ≈ −0.35, α1 ≈ 2.35). We calculate
the functionDp(ω) by direct summation overn × n q-points in the Brillouin zone (the
results forn = 32 andn = 80 are almost indistinguishable). From figure 1 we see that
the lowest-pole position obtained by the generalized projection method satisfies the relation
(25), in contrast to that given by perturbation theory.

Figure 2 shows the spectral function in the generalized projection method for various
values ofp along the diagonal of the Brillouin zone. Quasiparticle poles exist throughout



The generalized projection method 11023

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

0

3

6

9

12

15

18

21

J=3t  I=0.1t  η=0.05t

A
(p

,ω
+

iη
)*

t+
1.

5n
, 

 p
=

n*
(π

,π
)/

10

ω/t

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

0

3

6

9

12

15

18

21

J=1.5t  I=0.1t  η=0.05t

A
(p

,ω
+

iη
)*

t+
1.

5n
, 

 p
=

n*
(π

,π
)/

10

ω/t

Figure 2. The spectral density in the generalized
projection method as a function of the quasimomentum
p in the strong-coupling regime, whereJ/t = 3.

Figure 3. The spectral density in the intermediate-
parameter regime.

the whole Brillouin zone. The quasiparticle dispersionEp has only approximate symmetry
relative to the boundary of the antiferromagnetic Brillouin zone. The strong asymmetry
of the spectral weight in the generalized projection method is the consequence of the sum
rule (5)—the centre of gravityAaa(p, ω) should coincide witha0 = εp. So, near the point
p = (π, π), where the quasiparticle peak is far fromεp, its weight is small.

We have shown above that the expression (34) gives reasonable solutions in both the
weak- and strong-coupling limits. Thus we may expect it to be valid in the intermediate
regime whereJ ∼ t . Figure 3 shows the fermion spectral density forJ = 1.5t . In this
regime the quasiparticle solution exists only near the two band minimap = (π, π) and
p = (0, 0). At other points (for which we can say that the quasiparticle pole lies within the
band of bare fermions), the interaction mixes solutions with differentp. Forp = 0.2(π, π)
andp = 0.8(π, π), we have resonant solutions near the bottom (εmin = −4t) and the top
(εmax = 4t) of the bare-fermionic band respectively. Nearp = (π/2, π/2), we have a
purely incoherent spectrum.

6. Conclusions

We have considered the spin-fermion model that is often used for the description of strongly
correlated systems. We have compared two popular approaches to the calculation of the
fermionic Green’s function: the non-crossing approximation of perturbation theory and the
Mori–Zwanzig projection technique. We have shown that the first of these is valid only
in the weak-coupling regime while the second is valid only in the strong-coupling regime.
For the model, the non-crossing approximation gives an incorrect position for the lowest
quasiparticle band. The reason for this is the rough violation of the sum rule for the
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third moment of the spectral density. The summation of the infinite series of non-crossing
diagrams for the self-energy does not alter this result. We have proposed a generalized
version of the projection method that treats the kinetic energy term that is quadratic in
the fermion fields exactly. The resulting expression for the self-energy coincides with that
of perturbation theory in the weak-coupling limit, and provides the correct quasiparticle
pole position in the strong-coupling limit. We thus consider it as a good starting point
for the investigation of the intermediate-coupling regime that is believed to be relevant for
optimally doped cuprate compounds.
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